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Abstract. Navier-Stokes computations of subsonic to transonic flow past airfoils with

augmented lift. due to rearward jet blowing over a curved trailing edge are presented.

The approach uses an innovative spiral grid topology. Solutions are obtained using

a Navier-Stokes code (ARC2D) which employs an implicit finite difference method,

an algebrai( turbulence model, and some recent developments which improve stabil-

ity. convergence and accuracy. Results are compared against experiments for no jet

blowing and moderate jet pressures and demonstrate the unique capability to compute

these complicated flows.

I. INTRODUCTION

This paper presents details of an effort. 1.o compute the flow around an airfoil with

augmented lift caused by an exhausting rearward jet over a curved trailing edge

(Coanda effect,). Abrarnson and Rogers I give a good discussion of the circulation con-

trol airfoil problem and Coanda effect.. A recenl review paper by Wood and Nielsen 2

also describes the physical problem and experimental methods. The computations

performed here combine a well established flow solver for the thin-layer Navier-Stokes

equations (AIIC21)): wilh a number of ne_ concepts [0r grid generation and inte-

gration. A spiral grid topology is used 1_, provide adequate resolution inside the jet

plenum chamber, around the Coanda surface and then out to the far field boundary.

By manipulating the data base an integration scheme for this topology is employed

which does not create any nonphysical boundaries.

The computations are compared with experimental data for cases with and without

jet blowing. Results show good agreement with experimental data with significant lift

augmentation for the blowing cases. Lift augmentation (defined as the lift to blowing

rate curve slope) is compared with experimental data for various Mach numbers, angles

of attack, and two Coanda geometries. The data of Abramson and Rogers I provides

a useful set of experimental results for comparison.

135



This computational effort provides a needed tool for examining these complicated

flows, especially in the jet exit-Coanda surface region where experimental measure-

ments are difficult to obtain. The purpose of this paper is to demonstrate the ap-

plication of ARC2D to a very interesting physical problem. We are interested in

demonstrating the capibility to compute relevant trends from the experimental data.

Once a validation of the present method is accepted, we then hope to use these compu-

tational experiments to aid in our understanding of the physical mechanisms inherent

in the circulation control problem.

II. SPIRAL GRID GENERATION

One goal of this effort was to compute rather than model the flow at the jet exit. To

do this we require a grid extending into the plenum. In order to easily utilize the exist-

ing Navier-Stokes solver ARC2D, a mapping from physical space to a computational

rectangle was desired. These considerations led us to design a spiral grid mapping.

The grid "begins" in the chamber, continues out the plenum exit, and wraps around

the airfoil several times, spiraling away from the airfoil as it wraps around. Figure 1

shows the correspondence between physical and computational space.

In implementing this procedure, we use an intermediate step employing the map-

ping z : cos(;) from the complex f-plane to the complex z-plane. This function is

21r-periodic in f, takes horizontal lines in the ;-plane to ellipses in the z-plane, takes

vertical lines in the f-plane to hyperbolas in the z-plane, and takes lines with positive

slope in the C-plane to outward-spiraling curves in the z-plane. We are given coor-

dinates for the airfoil shape in physical space, defining a curve Cz running clockwise

from a poim on the Coanda surface beneath the jet exit around to the last point on the

lip above the slot. Using the one-dimensional distribution function of Vinokur 4, we

locate a given number of points around the airfoil with prescribed arclength spacings

in the Coanda region and at the leading edge. (Sometimes the function from Vinokur 4

stretches too slowly, in which case we use a simple polynomial distribution function.)

In a typical case we might have 281 points around the airfoil, with 120 of those points

aft Of 95% chord to give adequate circumferential resolution in the Coanda region. We

then find the prei-mages ;j of these points zj, i.e., cos(_':) = z: = xj + iyj. These

points fi = as ÷ i_: are found by a simple Newton iteration and define a curve C; in

the _'-plane. This curve is of the form _ = ]_(a), amin _< a __ a Tet. We then extend

this curve for a jet <_ o < ama_=, where am_ is chosen so that the grid spirals around

the airfoil a prescribed number of times (usually about 3.5) in physical space. Thus

we have a curve B = £_bottom(O_). OLrmn _ a < amax, in the f-plane.

We then define the upper boundary of the region in the f-plane via _ = i_top(a) =

]3bottom(Ol ÷ 27r), and we also ensure that _tor is defined for amin <_ a <_ arna_. This re-

sultsin adistortedrectangleinthe ;-plane, {(a,_) " amin <_ a <_ amaz, _bottom(a) <_

It < _top(a)} • We make a grid on this region as |bllows. The points aj are defined by

periodicity. A given number of points (typically 31) are distributed in the E-direction,
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with the normal spacing in the f-plane chosen to result in a prescribed normal spacing

(typically 0.002% of chord) at the airfoil surface in the physical plane. The one-

dimensional stretching function is used for the distribution in the B-direction. Care is

also taken that the grid spacing in physical space is continuous as wrap boundaries are

crossed moving away from the airfoil. Finally, a few (typically 10) Jacobi relaxation

steps are taken, again working in f-space, to enhance the smoothness of the grid.

The grid in the chamber is made in a separate step, working entirely in physical

space. Continuity of grid spacing in the circumferential direction is enforced at the jet

exit. Typically we use 71 grid points in the flow direction for the grid in the chamber.

The last step is to transform the grid in the f-plane to the z-plane via the cosine

mapping and "weld" on the grid in the chamber. The total process is algebraic and

explicit and results in a grid which extends into the plenum and gives good resolution

in the Coanda region. The dimensions of the final grid are typically 1065 × 31. The

mapping z = cos(f) is conformal but the grid in physical space is not orthogonal since

the grid in f-space is not orthogonal.

Abramson and Rogers 2 tested three different Coanda geometries for one basic el-

liptical slightly cambered airfoil. We have chosen two of the geometries, the rounded

ellipse (RE) and the displaced ellipse (DE). The forebody for both cases is identical

and a replaceable Coanda geometry was employed. Figure 2 shows the differences in

shape and curvature between the RE and DE geometries. These may seem small, but

experimental evidence shows a large effect of Coanda geometry on lift augmentation

and response to various flow parameters such as Mach number and angle of attack.

Plate 1 shows various views of the grid used for the RE computations. Note the con-

tinuity across wrap boundaries, the chamber-Coanda region and the clustering in the

Coanda base region. The DE grid is similar. Both grids are 1065 × 31 with 281 points

on the airfoil.

III. NAVIER-STOKES SOLVER

The Navier-Stokes solver (ARC2D)3 used for the computations was written at NASA

Ames Research Center. The thin-layer Navier-Stokes equations in generalized coordi-

nates are solved using an implicit approximate factorization technique. This code is

explained in detail in papers by Pulliam 3, Steger 5 and Pulliam and Steger 6 and will

not be reviewed at length here. The main features of this code are presented below.

The thin-layer Navier-Stokes equations written in generalized curvilinear coordinates

are

(1)
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where

pu , /_ = j-1

/_ = j-1

p_u + _p ]'
u(_ + p) - 6_3

I ]
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g _ J--l

[ _z(urn

0
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with

U= _t+ _u+(uv, V =rlt_-rl_u+rlgv

ml _- _(4Uxu n -- 2r/yvn)/3

m2 = tt(rlyU. + rl_v,)

m3 = Iz(-2rlzu. + 4rl.uv.)/3

m 4 -= i_Pr-l(.,i - 1)-lrl_O,(a 2)

ms = t_Pr-l(_r - 1)-lrluO,(a 2)

These equations are central space differenced and implicitly advanced in time. For
a

h = 5 or 1. the time integration is trapezoidal rule (second order in time) or Euler

implicit (first order in time)

(2)

where A,/_, and /_ are Jacobians of/_,/_, and S respectively.

An explicit nonlinear artificial dissipation term is added to enhance stability of

the central difference scheme. The form, a mixture of constant coefficient fourth

order and variable coefficient second order terms, has proven to be very successful

in obtaining accurate results for subsonic and transonic calculations. Details can be

found in References [3!, !6] and [7].

For steady-state computations or first order time integrations, a diagonal form of

Eq. (2) is used. In this case the left and right eigenvector matrices of A. and /3 are
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used to diagonalize the one-dimensional operators. Pulliam 3,s gives a discussion and

derivation of this algorithm. The diagonal algorithm can be written as

T_[I + h_,h_] N [I + h 6nAn] T,-1AQ n =/_n (3)

where

A _ = T_ IAT_ and A n - Tn -1BT n

with T, the matrix whose columns are the eigenvectors of A and T n the corresponding

eigenvector matrix for /3 and N = T_ITn. The main advantage of this form is the

simplification of the matrix inversions from block inversions to scalar inversions. This

reduces the computational work and makes it easier to vectorize the implicit scheme.

Also, the new scalar form for the inversion process allows for the use of scalar pen-

tadiagonal solvers so that the added fourth order explicit artificial dissipation can be

properly linearized and made fully implicit. This enhances stability and convergence

rates ( Refs. [3] and [6].) In viscous calculations the diagonal algorithm employs an

approximation to the implicit viscous terms where the eigenvalues of the viscous Jaco-

bian. are added to the inviscid eigenvalues for the 77 derivatives on the left-hand side

of Eq. (3), Ref. [3]

IV. BOUNDARY CONDITIONS

The boundary conditions used at the airfoil surface and far field boundary are stan-

dard ones defined in Refs. [3] and [6]. Briefly, no slip is enforced at the surface along

the plenum walls and airfoil surface. The normal pressure gradient is set to zero at

the solid surfaces and an adiabatic temperature boundary condition is used. Charac-

teristic conditions based on local one-dimensional Riemann invariants are used at the

far field boundary. A correction based on a potential vortex at the airfoil center with

a circulation consistent with the generated lift is also used to reduce the effect of the

location of the outer boundary.

At the plenum inlet, conditions are specified so that a required mass flow rate is

obtained at the slot exit. The geometry used in the plenum was supplied by Abramson

and Rogers 1 along with an estimated slot height. For a pressure ratio Pr and temper-

ature ratio Tr (plenum values to free stream values) mass flow rates were measured by

Abramson and Rogers. A nondimensional mass flow parameter, C u is defined as

rhVj (4)
Cu- 1Moo

where rh is mass flow rate, Moo is free stream Mach number and

Vs= _/2T,-.7_1 'y [1-p((_-l/_)] (5)
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is an isentropic jet velocity. Experimentally, some expansion of the slot can occur

when the plenum is pressurized, which will then alter the mass flow rates. The slot

heights given by Abramson and Rogers were estimated from an isentropic relation and

were on the order of 0.0021 (based on a chord of 1.0) for the geometries considered.

In order to match mass flow rates computationally, since the computational geometry

is rigid, the slot heights for the RE and DE were modified slightly. We employed a

value of 0.0025 for both cases which enabled us to match mass flow rates to within

3%. Figure 3 shows a correlation between the experimental mass flow rates and the

computed values for the cases presented below. An exact correlation would be along

the 45 degree line and we see quite acceptable results.

V. SPIRAL INTEGRATION

The grid generation procedure maps the flow region in physical space to a rectangu-

lar box in computational space (Fig. 1). The use of the spiral grid topology requires

us to reexamine our usual integration procedures. The _ integration of Eq. (3) is a

straightforward integration from the plenum chamber boundary (a-b) to the farfield

boundary (c-d). In the 77 direction, a first glance at the topology in computational

space shows that spiral boundaries occur as interior boundaries in physical space.

These are not physical boundaries but rather constructs of the grid generation. A

continuous integration across these boundaries is obtained by reordering the compu-

tational domain. Plate 1 shows views of the spiral grid where the plenum is shown in

red and sequential wraps of the grid are shown in different colors.

The implicit integration scheme, Eq. (3), can be rewritten symbolically as

L,L_AQ n = (R_ + R,) Q'_ (6)

where L represents an implicit operator and R an explicit operator. The first step

in the integration is to perform the explicit R_ differencing using the data in what

will be called the _ orientation, Fig. 1. The computational domain is then reordered

by an in-place transpose to the 77 orientation. The reordered computational domain

is shown in Fig. 4. and in Plate 2 the distinct r/ blocks are painted different colors.

Here the blocks of data constituting a spiral wrap are stacked on top of each other.

In this new computational space we integrate in r/ from wall to wall in the plenum

region and from the body surface to the far field boundary in the outer region. Both

the explicit R, and implicit L, operations are performed at this time. Note that if

the last wrap is not a full wrap then we actually define three regions and integrate

from boundary to boundary for each. After the 77 integration is complete the data is

reordered to the _ orientation and the implicit L, integration is performed, completing

the algorithm. Using this integration technique, we only encounter boundaries which

are physically meaningfull (on the airfoil surface, at the plenum chamber inflow and at

the far field boundary). The spiral wrap boundaries that physically lie in the interior

of the domain of in.tegration are treated at regular interior ponits and are solve using
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the conservation equations. That is, they are treated no differently than any other

interior point.

VI. TURBULENCE MODEL

There are a number of interesting physical mechanisms associated with the circula-

tion control problem. ]n the absence of the exhausting rearward jet, the blunt body

geometry produces base flow separation and the expected Cl - c_ responses. High

positive and negative angles of attack produce viscous stall and at low angles of attack

there is very little lift and substantial drag. As the pressure in the chamber increases

a jet exhausts out the slot and remains attached to the Coanda surface. The flow

off the upper airfoil surface is entrained at the jet-shear layer-upper boundary layer

interface. This entrainment of the upper surface flow produces the augmented lift via

increased circulation. As the blowing rate is increased the airfoil continues to gain

lift until a stall boundary is reached. The nature and cause of this stall is not fully

understood. It has been characterized as an "inviscid stall" as opposed to the classical

viscous airfoil stall. Although the authors are quite interested in this stall mechanism,

such cases are beyond the capabilities of the current turbulence model used here and

also require more study into the basic physical mechanisms involved in the prestall

conditions. Computations attempted at the post-stall conditions were unsteady and

not quite acceptable.

One of the more important effects needed in this problem is the jet-upper boundary

layer interaction. The boundary layer generated on the upper surface will be strongly

dependent on the upper surface geometry, the flow conditions (such as freestream

Mach number or angle of attack), and the increased accelerations due to the jet en-

trainment. The characteristics of the boundary layer (thickness, turbulence intensity)

as it encounters the jet will have a significant influence on the entrainment. The

Coanda jet attachment was surprisingly easy to obtain, but the effects of curvature

on the attached jet and jet-boundary layer interface are only weakly modeled in this

study. As the results below will suggest and numerous studies by others have shown,

improved turbulence models are the key to this problem. Even so, the relatively simple

algebraic turbulence model used here with its low order correction does an adequate

job.

Turbulence modeling of the airfoil and Coanda surface was accomplished by modify-

ing a zero equation model developed by Baldwin and Lomax 9 to account for the effect

of streamwise streamline curvature on the eddy viscosity. Bradshaw 1° and others have

reported on the large effect of streamline curvature in the plane of the mean shear on

the turbulence quantities. These effects are often much larger (in some cases as much

as an order of magnitude larger) than predicted by dimensional arguments. Bradshaw

(1973) suggests modifying the apparent mixing length using a correction analogous to
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the Monin-Obouhkov formula for buoyant flows

2U/R
= 1 +j3___--====-_

ov/oy
(7)

where R will be the streamline radius of curvature and B is an empirical constant on

the order of 10. For this investigation a different correction formula, suggested by

Baldwin (private communication), was used. This correction is derived from Prandtl's

turbulent kinetic energy equation with a curvature suppression term, Fc, suggested by

Baldwin, Chigier, and Sheaffer 11 in 1973 for a k - e model. In the notation of Rodi 12,

the steady kinetic energy equation with the curvature suppresion term suggestion by

Baldwin, et.alll is written as

u, ox--_- ox,. _ _ + _'' \ ozj + ox_/ o_j _+ _'c (8)

and

\ Ox i + _ ] _.v'_ /R (9a)

3

k: c_ki
ut = c_--, e- % _. .09 (9b)e /_ '

(Note that the c_, as used here differs from the C u defined in Eq. (4).) For the high

Reynolds number flow under consideration, only stress terms in the normal direction

are retained. In addition, convection and diffusion processes are neglected. Under

these assumptions the energy equation reduces to

CcU_tv_
vt_ 2 = _ (10)

R

This equation can then be so]ved for k and an expression for _t obtained.

' CcUiM_4v _ CcVoj_.4y/2

_2t = c_kf2 = _4w2 ! _ "t20 1_ (111
*R c"RC_ i,z

In this equation uto is the eddy viscosity computed in the standard Baldwin-Lomax

model and _ is a length scale such that

KP(y)y, if y < yc,.os_o_,¢,. ; (12)f" = K P(yc,.os_o,_,.)Y_,.o_ov_,', otherwise.

where y_ro_so_,_,, is the match point of the inner and outer layers, K is the Karman

constant and D is the usual VanDriest damping function for wall bounded flows.
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The only constant to be determined at this point is Cc. The calibration of this

constant based on other algebraic curvature models (e.g. Ref. 10 and 13) documented

in the literature is not straightforward . The constant Cc in Ref. 11 was chosen to

be unity, but this choice appears to have been somewhat arbitrary. A calibration of

Cc from the /3 in Bradshaw's formula can not be done, as we see it, because of the

different behavior of these models except for very small y+ values where curvature is

not important. Comparison with other Bradshaw like models proved equally unsat-

ifactory and therfore a numerical calibration of C_ based on the experimental data

was performed in the calculations presented below.

VII. RESULTS

The computational code (ARC2D) has been validated for a wide variety of cases,

see Pulliam 1 and Barth, Pulliam, and Buning TM for numerous examples. The code

with the modification for the spiral integration was first validated against a nonspiral

standard code for no jet blowing and showed excellent agreement. A conventional 'O'

mesh with a closed slot was compared with a spiral mesh solution at Moo = 0.3 and

a = -5.0 °. Pressure distributions for both computations are compared in Fig. 5. All

other measures of accuracy show good to excellent agreement.

Computations for the two Coanda shapes were performed at two Mach numbers,

Moo = 0.3 and Moo - 0.6. Abramson and Rogers 1 provided the experimental condi-

tions and data. Significant angle of attack corrections for wind tunnel wall interference

were suggested to us. An angle of attack correction of -1.5 × Ct was calibrated by the

experimenters. A set of potential code results was used where lifts were matched to

the experimental data and circulation was modified using angle of attack changes until

the mid-chord pressure gap and leading edge pressure matched experimental values.

A calibration across the experimental data produced the factor of -1.5. The compu-

tations presented here are for an experimental geometric angle of attack ageo = 0 °

with angle of attack corrections -1.5Cl where C1 is taken from the experimental data.

Note that this can be a substantial correction factor since lift levels reach values of

Cl >- 2.0.

Tables 1-4 list the computed cases showing the Coanda type used, Mach number,

pressure ratio Pr, angle of attack, experimental C_, Cl, and computed C_,Ct. The

column labeled 'Point' refers to the experimental designation which will be used here

to delineate cases.

Plots of Cl against C_ for the above cases are shown in Fig. 6 and 7. The com-

putations are able to predict the lift augmentation (lift-slope curves) quite well. In

particular, the differences due to changes in Coanda geometry are predicted. For the

RE geometry the Moo = 0.3 produces higher lift augmentation than the Moo = 0.6

case. For the DE geometry the Moo = 0.6 case produces more lift augmentation than

the Moo = 0.3.

As can be seen the lift coefficients compare quite well over a broad range of blowing
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rates. In order to obtain such good comparisons the turbulence model parameter Cc

had to be adjusted. As mentioned above better turbulence modeling is crucial to this

problem. Within the constraints of the simple curvature correction used here each

case was calibrated by adjusting Co. Specifically, we choose one point from each of the

above Tables (Points 38, 304, 733, and 748) and adjusted Cc until the lifts matched

the experimental data to within 3%. Once a value of Cc was obtained for one point,

all other cases in the associated table were generated with that value. The values of

Cc used are listed with the above tables.

The significance of these variations in C_ can only be speculated on. The effect of

curvature on the jet-boundary layer interaction and jet-Coanda flowfield are not prop-

erly understood but are obviously important. Differences in upper surface boundary

layer caused by differences in free stream Mach number and the differences in curva-

ture due to the two Coanda geometries can account for the sensitivity to the curvature

correction.

There seems to be a rather large discrepancy for the low Mach number (Moo =

0.3) nonblowing cases, Points 33 and 728, which occurs for both geometries. The

computations simply do not produce the large level of lift obtained in the experiments.

The basic airfoil section has about 1% camber which can account for the experimental

lift. There may be laminar-turbulent transition effects which the computation cannot

account for, or the angle of attack correction scheme may not be applicable for these

cases. At the higher Mach number (Moo = 0.6) the experimental lift is essentially zero

and the computations agree better with the experimental data.

Pressure distributions compared with the experimental data for selected cases are

shown in Figs. 8-11. In Fig. 8, results are shown for the RE airfoil at Moo = 0.3,

ageo : 0 c and a Reynolds number Re = 3.0 × 106 for various pressure ratios Pr.

The key points to look for are comparison of leading edge pressure distribution and

midchord pressure gap which indicate that the angle of attack correction is proper and

the blowing rate (mass flow C_,) is good. Note that since angle of attack corrections

are needed and the mass flow out the jet has a strong influence on the solution, there

is the possibility of predicting lifts that match experimental data for a wide variety of

angles and mass flow rates. In the results shown here the leading edge pressure and

midchord pressure match quite well at least up until the higher pressure ratio case.

As shown in Table 1 lift coefficient is predicted accurately for these cases.

The pressure distributions in the regions before the jet-Coanda interaction on the

upper and lower surface are important indicators of having a good prediction of the

incoming boundary layers which stongly influence the entrainment mechanism. The

results shown in Fig. 8 show fairly good pressure gradients in those regions.

Plates 3a and 3b show Mach contours in color for results from Point 33. The

color contour range was taken between the minimum and maximum Mach number

with blue being M = 0.0 and magenta M = 0.36. Note the continuity of Math

contours throughout the flow field even across wrap boundaries, as expected because
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of the spiral integration discussed above. This a case with no jet blowing and we

obtain the massive base flow separation. Plate 3b shows the extent of the separation

region and gives an indication of the boundary layers on the upper and lower surfaces.

Plates 4a and 4b show Mach contours for Point 38 and have the color scale blue for

M = 0.0 to magenta for M -- 1.1. The jet remains attached to the Coanda surface (the

Coanda effect) which produces a region where the jet-upper surface boundary layer

can interact. The shear layer between the jet and the upper surface flow produces

an entrainment of fluid, i.e. a transfer of high momentum from the jet to the lower

momentum upper surface boundary layer flow. It is easily seen from a comparison

with Plate 3 that stagnation points have moved below the leading and trailing edges

indicating increased circulation. The base flow separation has been moved to the lower

part of the Coanda and reduced. The wake-shear layer region where the jet detaches

from the Coanda surface is deflected.

Figure 9 shows pressure distributions for some of the Moo = 0.6, ageo = 0 °, and

Re = 5.0 x 10 (; RE cases. The leading edge, midchord pressure gap and lifts are

in good agreement with the experimental data. The trailing edge pressure gradients

appear to be good but the absolute level of the pressure in those regions is a little

low. Even so the results are quite good overall. In this case the jet detaches from

the Coanda surface sooner than for the lower Mach number case because of the lower

mass flow rate. There is less overall entrainment and therefore less lift augmentation.

The separation region is more like a base flow separation.

Pressure distributions for the DE Coanda are shown in Fig. 10 (Moo = 0.3, ageo = 0 °

and Re = 2.88 x 106 ) and Fig. 11 (Moo = 0.6, Re = 5.0x 106). The quality of the

results is similar to the RE solutions. The leading edge pressure, midchord pressure

gaps and pressure gradients again compare quite well with the experimental data. For

the DE, the jet detaches from the Coanda surface sooner than in the RE case even

though the mass flow rates (Cv = 0.0322 for the RE and Cv = 0.036 for the DE) are

similar. This is a direct response to the Coanda surface geometry (curvature) since

both cases use the same forebody, incoming Mach number and geometric of attack.

Note that since different lift levels were reached in the experiment different angle of

attack corrections were needed in the computations.

In Plate 5 we show Mach color contours for four of the cases. Plate 5a is for RE

Point 38, Plate 5b for RE Point 304, Plate 5c for DE Point 733 and Plate 5d for DE

point 748. These are Mach contour maps where each region is colored based on the

local Mach number. Contour lines are added to enhance levels. The Plates give a

comparative picture of the structure of the flow fields. One can note the entrainment

of the upper surface flow into the jet wake flow, the deflections of the wake centerlines

and the relative lengths of the jets, detachment points, and separation regions.

VI SUMMARY

A computational capability for computing Navier-Stokes solutions for circulation

controlled airfoils has been developed. The spiral grid topology allows us to integrate
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the jet plenum chamber and exterior flow as a single unit. The cases presented here are

representative of the computational capability. The results compare quite well with

experiment, predicting pressure distributions, lift levels, lift augmentation, Coanda

geometry effects, and flow field structure for a wide variety of blowing rates and two

Mach numbers. The results are not completely predictive since the turbulence model

had to be calibrated for a curvature correction. It is obvious that better turbulence

modeling is needed for this problem. Future work will concentrate on the turbulence

modeling and attempting to compute stall boundaries and understand the physics of

the stall and general flow field.
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Table 1. RE Coanda Moo --- 0.3, a_eo = 0.0 °, Cc = 1.6
Point O_

33 1.000 -0.11

35 1.137 -0.93

C_ Exp.
0.0000

CI Exp.

0.169
U s Comp.

0.0000

CI Comp.

0.055

0.0094 0.616 0.0089 0.606

36 1.284 -1.66 0.0179 1.106 0.0176 1.127

37 1.432 -2.18 0.0253 1.454 0.0259 1.496

38 1.573 -2.65 0.0322 1.764 0.0322 1.743

39 1.705 -3.00 0.0376 2.000 0.0388 2.073

Table 2. RE CoandaMoo = 0.6, ageo = 0.0 °, Cc = 4.4

Point Pr a C_ Exp. Cz Exp. C_ Comp. Cl Comp.

301 1.000 00.00 0.0000 0.036 0.0000 0.033

302 1.202 -0.29 0.0032 0.191 0.0029 0.106

304 1.533 -0.58 0.0075 0.388 0.0074 0.375

305 1.701 -0.71 0.0094 0.472 0.0094 0.472

307 2.045 -0.95 0.0132 0.634 0.0134 0.695

Table 3. DE Coanda = 0.0 °, Cc = 2.0

Point

728

(2

-0.25

Moo = 0.3, apeo

C, Exp. Cl Exp.

0.0000 0.167

C_, Comp. Ct Comp.

0.0000 0.0331.000

729 1.068 -0.42 0.0041 0.281 0.0041 0.229

731 1.300 -1.06 0.0176 0.705 0.0182 0.745

732 1.488 -1.40 0.0252 0.932 0.0258 0.957

733 1.588 -1.79 0.0322 1.192

734 1.716 -2.05 0.0377 1.367

0.0326 1.202

0.0385 1.411

735 1.188 -2.31 0.0445 1.541 0.0461 1.550

Table 4. DE Coanda Moo = 0.6, ageo = 0.0 °, Cc = 2.2

Point Pr a Ct Exp. Cu Comp. Ct Comp.

744 1.000 -0.11
C# Exp.

0.0000 0.073 0.0000 0.048

745 1.168 -0.36 0.0026 0.237 0.0024 0.135

747 1.526 -0.78 0.0074 0.518 0.0074 0.513

748 1.709 -0.96 0.0095 0.614 0.0096 0.627

751 2.038 -1.21 0.0130 0.805 0.0133 0.806
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Plate 1. Spiral Grid Topology IJsed In Computations Showing grid Distributions and Spiral 
Wrap Boundaries For 6 Orientation. 



Plate 1. Concluded. 
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Plate 2. Spiral Grid Topology Used In Computations Showing grid Distributions and Spiral 
Wrap Boundaries For 7 Orientation. 

1 
. '  , .  



a) Point 38. 

-&eaopp 

b) Point 304. 

Plate 5. Color Mach Contours Showing The Relative Differences In The Flow Structures Due 
To Mach Number and Coanda Geometry. 
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c) Point 733. 

PAGE 

d) Point 748. 

Plate 5 .  Concluded. 
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